Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
Am J Hum Genet ; 110(11): 1903-1918, 2023 11 02.
Article in English | MEDLINE | ID: mdl-37816352

ABSTRACT

Despite whole-genome sequencing (WGS), many cases of single-gene disorders remain unsolved, impeding diagnosis and preventative care for people whose disease-causing variants escape detection. Since early WGS data analytic steps prioritize protein-coding sequences, to simultaneously prioritize variants in non-coding regions rich in transcribed and critical regulatory sequences, we developed GROFFFY, an analytic tool that integrates coordinates for regions with experimental evidence of functionality. Applied to WGS data from solved and unsolved hereditary hemorrhagic telangiectasia (HHT) recruits to the 100,000 Genomes Project, GROFFFY-based filtration reduced the mean number of variants/DNA from 4,867,167 to 21,486, without deleting disease-causal variants. In three unsolved cases (two related), GROFFFY identified ultra-rare deletions within the 3' untranslated region (UTR) of the tumor suppressor SMAD4, where germline loss-of-function alleles cause combined HHT and colonic polyposis (MIM: 175050). Sited >5.4 kb distal to coding DNA, the deletions did not modify or generate microRNA binding sites, but instead disrupted the sequence context of the final cleavage and polyadenylation site necessary for protein production: By iFoldRNA, an AAUAAA-adjacent 16-nucleotide deletion brought the cleavage site into inaccessible neighboring secondary structures, while a 4-nucleotide deletion unfolded the downstream RNA polymerase II roadblock. SMAD4 RNA expression differed to control-derived RNA from resting and cycloheximide-stressed peripheral blood mononuclear cells. Patterns predicted the mutational site for an unrelated HHT/polyposis-affected individual, where a complex insertion was subsequently identified. In conclusion, we describe a functional rare variant type that impacts regulatory systems based on RNA polyadenylation. Extension of coding sequence-focused gene panels is required to capture these variants.


Subject(s)
Smad4 Protein , Telangiectasia, Hereditary Hemorrhagic , Humans , Base Sequence , DNA , Leukocytes, Mononuclear/pathology , Nucleotides , Polyadenylation/genetics , RNA , Smad4 Protein/genetics , Telangiectasia, Hereditary Hemorrhagic/genetics , Whole Genome Sequencing
2.
J Thromb Haemost ; 20(7): 1712-1719, 2022 07.
Article in English | MEDLINE | ID: mdl-35325493

ABSTRACT

BACKGROUND: Platelet α-granule biogenesis in precursor megakaryocytes is critically dependent on VPS33B and VPS16B, as demonstrated by the platelet α-granule deficiency seen in the rare multisystem disorder arthrogryposis, renal dysfunction, and cholestasis (ARC) syndrome associated with biallelic pathogenic variants in VPS33B and VIPAS39 (encoding VPS16B). VPS33B and VPS16B are ubiquitously expressed proteins that are known to interact and play key roles in protein sorting and trafficking between subcellular locations. However, there remain significant gaps in our knowledge of the nature of these interactions in primary cells from patients with ARC syndrome. OBJECTIVES: To use primary cells from patients with ARC syndrome to better understand the interactions and roles of VPS33B and VPS16B in platelets and precursor megakaryocytes. PATIENTS/METHODS: The proband and his male sibling were clinically suspected to have ARC syndrome. Confirmatory genetic testing and platelet phenotyping, including electron microscopy and protein expression analysis, was performed with consent in a research setting. RESULTS: We describe the first case of ARC syndrome identified in Costa Rica, associated with a novel homozygous nonsense VPS33B variant that is linked with loss of expression of both VPS33B and VPS16B in platelets. CONCLUSION: These results indicate that stable expression of VPS16B in platelets, their precursor megakaryocytes, and other cells is dependent on VPS33B. We suggest that systematic evaluation of primary cells from patients with a range of VPS33B and VIPAS39 variants would help to elucidate the interactions and functions of these proteins.


Subject(s)
Arthrogryposis , Cholestasis , Arthrogryposis/diagnosis , Arthrogryposis/genetics , Arthrogryposis/metabolism , Blood Platelets/metabolism , Cholestasis/diagnosis , Cholestasis/genetics , Cholestasis/metabolism , Humans , Male , Renal Insufficiency , Siblings , Vesicular Transport Proteins/genetics , Vesicular Transport Proteins/metabolism
4.
Future Healthc J ; 8(1): e153-e155, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33791497

ABSTRACT

Postgraduate medical education faces ongoing disruption due to the COVID-19 pandemic, with specific challenges in providing training in laboratory medicine. We report an online approach that has enabled us to continue to deliver haematology morphology training in a teaching hospital setting. The method described is associated with high levels of participant satisfaction and could easily be adapted for use in other clinical pathology specialties.

5.
J Thromb Haemost ; 18(9): 2209-2214, 2020 09.
Article in English | MEDLINE | ID: mdl-32634856

ABSTRACT

BACKGROUND: Thrombomodulin-associated coagulopathy (TM-AC) is a rare bleeding disorder in which a single reported p.Cys537* variant in the thrombomodulin gene THBD causes high plasma thrombomodulin (TM) levels. High TM levels attenuate thrombin generation and delay fibrinolysis. OBJECTIVES: To report the characteristics of pedigree with a novel THBD variant causing TM-AC, and co-inherited deficiency of thrombin-activatable fibrinolysis inhibitor (TAFI). PATIENTS/METHODS: Identification of pathogenic variants in hemostasis genes by next-generation sequencing and case recall for deep phenotyping. RESULTS: Pedigree members with a previously reported THBD variant predicting p.Pro496Argfs*10 and chain truncation in TM transmembrane domain had abnormal bleeding and greatly increased plasma TM levels. Affected cases had attenuated thrombin generation and delayed fibrinolysis similar to previous reported TM_AC cases with THBD p.Cys537*. Coincidentally, some pedigree members also harbored a stop-gain variant in CPB2 encoding TAFI. This reduced plasma TAFI levels but was asymptomatic. Pedigree members with TM-AC caused by the p.Pro496Argfs*10 THBD variant and also TAFI deficiency had a partially attenuated delay in fibrinolysis, but no change in the defective thrombin generation. CONCLUSIONS: These data extend the reported genetic repertoire of TM-AC and establish a common molecular pathogenesis arising from high plasma levels of TM extra-cellular domain. The data further confirm that the delay in fibrinolysis associated with TM-AC is directly linked to increased TAFI activation. The combination of the rare variants in the pedigree members provides a unique genetic model to develop understanding of the thrombin-TM system and its regulation of TAFI.


Subject(s)
Blood Coagulation Disorders , Carboxypeptidase B2 , Carboxypeptidase B2/genetics , Fibrinolysis/genetics , Humans , Pedigree , Thrombin , Thrombomodulin/genetics
8.
Hum Mutat ; 41(1): 277-290, 2020 01.
Article in English | MEDLINE | ID: mdl-31562665

ABSTRACT

The heterogeneous manifestations of MYH9-related disorder (MYH9-RD), characterized by macrothrombocytopenia, Döhle-like inclusion bodies in leukocytes, bleeding of variable severity with, in some cases, ear, eye, kidney, and liver involvement, make the diagnosis for these patients still challenging in clinical practice. We collected phenotypic data and analyzed the genetic variants in more than 3,000 patients with a bleeding or platelet disorder. Patients were enrolled in the BRIDGE-BPD and ThromboGenomics Projects and their samples processed by high throughput sequencing (HTS). We identified 50 patients with a rare variant in MYH9. All patients had macrothrombocytes and all except two had thrombocytopenia. Some degree of bleeding diathesis was reported in 41 of the 50 patients. Eleven patients presented hearing impairment, three renal failure and two elevated liver enzymes. Among the 28 rare variants identified in MYH9, 12 were novel. HTS was instrumental in diagnosing 23 patients (46%). Our results confirm the clinical heterogeneity of MYH9-RD and show that, in the presence of an unclassified platelet disorder with macrothrombocytes, MYH9-RD should always be considered. A HTS-based strategy is a reliable method to reach a conclusive diagnosis of MYH9-RD in clinical practice.


Subject(s)
Genetic Association Studies , Genetic Predisposition to Disease , Genetic Variation , High-Throughput Nucleotide Sequencing , Myosin Heavy Chains/genetics , Adolescent , Adult , Aged , Alleles , Child , Child, Preschool , Chromosome Mapping , Evolution, Molecular , Female , Fluorescent Antibody Technique , Gene Expression , Genetic Association Studies/methods , Genotype , High-Throughput Nucleotide Sequencing/methods , Humans , Infant , Male , Middle Aged , Mutation , Myosin Heavy Chains/metabolism , Phenotype , Young Adult
9.
Semin Thromb Hemost ; 45(7): 685-694, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31041802

ABSTRACT

Recent advances in genetic analysis are bringing huge benefits to patients with rare genetic disorders, including those with inherited disorders of platelet number and function. Modern clinical hematological practice now has a range of genetic techniques available to enable the precision diagnosis of inherited platelet disorders (IPDs). There are some features of this disparate group of inherited disorders that present specific challenges to establishing an accurate genetic diagnosis. This review aims to introduce the techniques that are relevant for the genetic diagnosis of IPDs and will discuss the key considerations necessary for their application to the clinic.


Subject(s)
Blood Platelet Disorders/diagnosis , Genetic Testing/methods , High-Throughput Nucleotide Sequencing/methods , Blood Platelet Disorders/genetics , Humans
12.
14.
Blood ; 130(8): 1026-1030, 2017 08 24.
Article in English | MEDLINE | ID: mdl-28637664

ABSTRACT

Heritable platelet function disorders (PFDs) are genetically heterogeneous and poorly characterized. Pathogenic variants in RASGRP2, which encodes calcium and diacylglycerol-regulated guanine exchange factor I (CalDAG-GEFI), have been reported previously in 3 pedigrees with bleeding and reduced platelet aggregation responses. To better define the phenotype associated with pathogenic RASGRP2 variants, we compared high-throughput sequencing and phenotype data from 2042 cases in pedigrees with unexplained bleeding or platelet disorders to data from 5422 controls. Eleven cases harbored 11 different, previously unreported RASGRP2 variants that were biallelic and likely pathogenic. The variants included 5 high-impact variants predicted to prevent CalDAG-GEFI expression and 6 missense variants affecting the CalDAG-GEFI CDC25 domain, which mediates Rap1 activation during platelet inside-out αIIbß3 signaling. Cases with biallelic RASGRP2 variants had abnormal mucocutaneous, surgical, and dental bleeding from childhood, requiring ≥1 blood or platelet transfusion in 78% of cases. Platelets displayed reduced aggregation in response to adenosine 5'-diphosphate and epinephrine, but variable aggregation defects with other agonists. There were no other consistent clinical or laboratory features. These data enable definition of human CalDAG-GEFI deficiency as a nonsyndromic, recessive PFD associated with a moderate or severe bleeding phenotype and complex defects in platelet aggregation.


Subject(s)
Blood Platelets/pathology , Guanine Nucleotide Exchange Factors/genetics , Hemorrhage/genetics , Mutation/genetics , Alleles , Base Sequence , Female , Humans , Male , Pedigree
15.
J Clin Invest ; 127(3): 814-829, 2017 Mar 01.
Article in English | MEDLINE | ID: mdl-28134622

ABSTRACT

Platelets are anuclear cells that are essential for blood clotting. They are produced by large polyploid precursor cells called megakaryocytes. Previous genome-wide association studies in nearly 70,000 individuals indicated that single nucleotide variants (SNVs) in the gene encoding the actin cytoskeletal regulator tropomyosin 4 (TPM4) exert an effect on the count and volume of platelets. Platelet number and volume are independent risk factors for heart attack and stroke. Here, we have identified 2 unrelated families in the BRIDGE Bleeding and Platelet Disorders (BPD) collection who carry a TPM4 variant that causes truncation of the TPM4 protein and segregates with macrothrombocytopenia, a disorder characterized by low platelet count. N-Ethyl-N-nitrosourea-induced (ENU-induced) missense mutations in Tpm4 or targeted inactivation of the Tpm4 locus led to gene dosage-dependent macrothrombocytopenia in mice. All other blood cell counts in Tpm4-deficient mice were normal. Insufficient TPM4 expression in human and mouse megakaryocytes resulted in a defect in the terminal stages of platelet production and had a mild effect on platelet function. Together, our findings demonstrate a nonredundant role for TPM4 in platelet biogenesis in humans and mice and reveal that truncating variants in TPM4 cause a previously undescribed dominant Mendelian platelet disorder.


Subject(s)
Blood Platelets/metabolism , Genes, Dominant , Genetic Diseases, Inborn , Mutation, Missense , Thrombocytopenia , Tropomyosin , Animals , Genetic Diseases, Inborn/genetics , Genetic Diseases, Inborn/metabolism , Genome-Wide Association Study , Humans , Male , Mice , Mice, Inbred BALB C , Mice, Mutant Strains , Thrombocytopenia/genetics , Thrombocytopenia/metabolism , Tropomyosin/genetics , Tropomyosin/metabolism
16.
Blood ; 129(4): 520-524, 2017 01 26.
Article in English | MEDLINE | ID: mdl-28064200

ABSTRACT

The von Willebrand receptor complex, which is composed of the glycoproteins Ibα, Ibß, GPV, and GPIX, plays an essential role in the earliest steps in hemostasis. During the last 4 decades, it has become apparent that loss of function of any 1 of 3 of the genes encoding these glycoproteins (namely, GP1BA, GP1BB, and GP9) leads to autosomal recessive macrothrombocytopenia complicated by bleeding. A small number of variants in GP1BA have been reported to cause a milder and dominant form of macrothrombocytopenia, but only 2 tentative reports exist of such a variant in GP1BB By analyzing data from a collection of more than 1000 genome-sequenced patients with a rare bleeding and/or platelet disorder, we have identified a significant association between rare monoallelic variants in GP1BB and macrothrombocytopenia. To strengthen our findings, we sought further cases in 2 additional collections in the United Kingdom and Japan. Across 18 families exhibiting phenotypes consistent with autosomal dominant inheritance of macrothrombocytopenia, we report on 27 affected cases carrying 1 of 9 rare variants in GP1BB.


Subject(s)
Blood Platelets/metabolism , Hemorrhage/genetics , Mutation , Platelet Glycoprotein GPIb-IX Complex/genetics , Thrombocytopenia/genetics , Alleles , Blood Platelets/pathology , Case-Control Studies , Female , Gene Expression , Genes, Dominant , Genome, Human , Hemorrhage/diagnosis , Hemorrhage/metabolism , Hemorrhage/pathology , High-Throughput Nucleotide Sequencing , Humans , Male , Pedigree , Platelet Count , Thrombocytopenia/diagnosis , Thrombocytopenia/metabolism , Thrombocytopenia/pathology
17.
Blood ; 128(14): 1879-1883, 2016 10 06.
Article in English | MEDLINE | ID: mdl-27436851

ABSTRACT

Thrombomodulin-associated coagulopathy (TM-AC) is a newly recognized dominant bleeding disorder in which a p.Cys537Stop variant in the thrombomodulin (TM) gene THBD, results in high plasma TM levels and protein C-mediated suppression of thrombin generation. Thrombin in complex with TM also activates thrombin-activatable fibrinolysis inhibitor (TAFI). However, the effect of the high plasma TM on fibrinolysis in TM-AC is unknown. Plasma from TM-AC cases and high-TM model control samples spiked with recombinant soluble TM showed reduced tissue factor-induced thrombin generation. Lysis of plasma clots from TM-AC cases was significantly delayed compared with controls but was completely restored when TM/thrombin-mediated TAFI activation was inhibited. Clots formed in blood from TM-AC cases had the same viscoelastic strength as controls but also showed a TAFI-dependent delay in fibrinolysis. Delayed fibrinolysis was reproduced in high-TM model plasma and blood samples. Partial restoration of thrombin generation with recombinant activated factor VII or activated prothrombin complex concentrate did not alter the delayed fibrinolysis in high-TM model blood. Our finding of a previously unrecognized fibrinolytic phenotype indicates that bleeding in TM-AC has a complex pathogenesis and highlights the pivotal role of TM as a regulator of hemostasis.


Subject(s)
Blood Coagulation Disorders/metabolism , Fibrinolysis , Thrombomodulin/metabolism , Adult , Factor VIIa/pharmacology , Female , Fibrinolysis/drug effects , Genes, Dominant , Humans , Male , Middle Aged , Pedigree , Phenotype , Prothrombin/pharmacology , Recombinant Proteins/pharmacology , Thrombin/metabolism
18.
Blood ; 127(23): 2791-803, 2016 06 09.
Article in English | MEDLINE | ID: mdl-27084890

ABSTRACT

Inherited bleeding, thrombotic, and platelet disorders (BPDs) are diseases that affect ∼300 individuals per million births. With the exception of hemophilia and von Willebrand disease patients, a molecular analysis for patients with a BPD is often unavailable. Many specialized tests are usually required to reach a putative diagnosis and they are typically performed in a step-wise manner to control costs. This approach causes delays and a conclusive molecular diagnosis is often never reached, which can compromise treatment and impede rapid identification of affected relatives. To address this unmet diagnostic need, we designed a high-throughput sequencing platform targeting 63 genes relevant for BPDs. The platform can call single nucleotide variants, short insertions/deletions, and large copy number variants (though not inversions) which are subjected to automated filtering for diagnostic prioritization, resulting in an average of 5.34 candidate variants per individual. We sequenced 159 and 137 samples, respectively, from cases with and without previously known causal variants. Among the latter group, 61 cases had clinical and laboratory phenotypes indicative of a particular molecular etiology, whereas the remainder had an a priori highly uncertain etiology. All previously detected variants were recapitulated and, when the etiology was suspected but unknown or uncertain, a molecular diagnosis was reached in 56 of 61 and only 8 of 76 cases, respectively. The latter category highlights the need for further research into novel causes of BPDs. The ThromboGenomics platform thus provides an affordable DNA-based test to diagnose patients suspected of having a known inherited BPD.


Subject(s)
Blood Platelet Disorders/genetics , Genetic Predisposition to Disease , Hemorrhage/genetics , High-Throughput Nucleotide Sequencing/methods , Thrombosis/genetics , Case-Control Studies , DNA Copy Number Variations , Female , Genetic Association Studies/methods , Humans , Male , Mutation , Polymorphism, Single Nucleotide , Sequence Analysis, DNA/methods
19.
Sci Transl Med ; 8(328): 328ra30, 2016 Mar 02.
Article in English | MEDLINE | ID: mdl-26936507

ABSTRACT

The Src family kinase (SFK) member SRC is a major target in drug development because it is activated in many human cancers, yet deleterious SRC germline mutations have not been reported. We used genome sequencing and Human Phenotype Ontology patient coding to identify a gain-of-function mutation in SRC causing thrombocytopenia, myelofibrosis, bleeding, and bone pathologies in nine cases. Modeling of the E527K substitution predicts loss of SRC's self-inhibitory capacity, which we confirmed with in vitro studies showing increased SRC kinase activity and enhanced Tyr(419) phosphorylation in COS-7 cells overexpressing E527K SRC. The active form of SRC predominates in patients' platelets, resulting in enhanced overall tyrosine phosphorylation. Patients with myelofibrosis have hypercellular bone marrow with trilineage dysplasia, and their stem cells grown in vitro form more myeloid and megakaryocyte (MK) colonies than control cells. These MKs generate platelets that are dysmorphic, low in number, highly variable in size, and have a paucity of α-granules. Overactive SRC in patient-derived MKs causes a reduction in proplatelet formation, which can be rescued by SRC kinase inhibition. Stem cells transduced with lentiviral E527K SRC form MKs with a similar defect and enhanced tyrosine phosphorylation levels. Patient-derived and E527K-transduced MKs show Y419 SRC-positive stained podosomes that induce altered actin organization. Expression of mutated src in zebrafish recapitulates patients' blood and bone phenotypes. Similar studies of platelets and MKs may reveal the mechanism underlying the severe bleeding frequently observed in cancer patients treated with next-generation SFK inhibitors.


Subject(s)
Bone and Bones/pathology , Hemorrhage/genetics , Mutation/genetics , Primary Myelofibrosis/genetics , Thrombocytopenia/genetics , src-Family Kinases/genetics , Animals , Blood Platelets/pathology , COS Cells , Chlorocebus aethiops , Female , Hematopoiesis , Hemorrhage/complications , Humans , Male , Pedigree , Phenotype , Primary Myelofibrosis/complications , Thrombocytopenia/complications , Transfection , Zebrafish
20.
Arterioscler Thromb Vasc Biol ; 36(5): 952-60, 2016 05.
Article in English | MEDLINE | ID: mdl-26966273

ABSTRACT

OBJECTIVE: Protease-activated receptor 4 (PAR4) is a key regulator of platelet reactivity and is encoded by F2RL3, which has abundant rare missense variants. We aimed to provide proof of principle that rare F2LR3 variants potentially affect platelet reactivity and responsiveness to PAR1 antagonist drugs and to explore underlying molecular mechanisms. APPROACH AND RESULTS: We identified 6 rare F2RL3 missense variants in 236 cardiac patients, of which the variant causing a tyrosine 157 to cysteine substitution (Y157C) was predicted computationally to have the greatest effect on PAR4 structure. Y157C platelets from 3 cases showed reduced responses to PAR4-activating peptide and to α-thrombin compared with controls, but no reduction in responses to PAR1-activating peptide. Pretreatment with the PAR1 antagonist vorapaxar caused lower residual α-thrombin responses in Y157C platelets than in controls, indicating greater platelet inhibition. HEK293 cells transfected with a PAR4 Y157C expression construct had reduced PAR4 functional responses, unchanged total PAR4 expression but reduced surface expression. PAR4 Y157C was partially retained in the endoplasmic reticulum and displayed an expression pattern consistent with defective N-glycosylation. Mutagenesis of Y322, which is the putative hydrogen bond partner of Y157, also reduced PAR4 surface expression in HEK293 cells. CONCLUSIONS: Reduced PAR4 responses associated with Y157C result from aberrant anterograde surface receptor trafficking, in part, because of disrupted intramolecular hydrogen bonding. Characterization of PAR4 Y157C establishes that rare F2RL3 variants have the potential to markedly alter platelet PAR4 reactivity particularly after exposure to therapeutic PAR1 antagonists.


Subject(s)
Blood Platelets/metabolism , Platelet Activation , Receptors, Thrombin/metabolism , Aged , Blood Platelets/drug effects , Case-Control Studies , Computer Simulation , Dose-Response Relationship, Drug , Endoplasmic Reticulum/metabolism , England , Female , Genotype , Glycosylation , HEK293 Cells , Humans , Hydrogen Bonding , Lactones/pharmacology , Male , Models, Molecular , Mutation, Missense , Peptides/pharmacology , Phenotype , Platelet Activation/drug effects , Platelet Aggregation , Platelet Aggregation Inhibitors/pharmacology , Polymorphism, Single Nucleotide , Protein Conformation , Protein Transport , Pyridines/pharmacology , Receptor, PAR-1/drug effects , Receptor, PAR-1/metabolism , Receptors, Thrombin/chemistry , Receptors, Thrombin/drug effects , Receptors, Thrombin/genetics , Structure-Activity Relationship , Thrombin/pharmacology , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...